
Derivation of Denoising Diffusion Policy Optimization

Objectives from Scratch

Tanishq Mathew Abraham, Ph.D.

September 17, 2023

1 Introduction

Denoising Diffusion Policy Optimization (DDPO) applies reinforcement learning, and specifically policy
gradient methods, to optimize diffusion models against some desired reward signal (ex: aesthetics). A
full tutorial and code example is provided as a blog post, along with a short explanation and intuition
of how the training works. This document serves specifically as supplemental material to the blog post,
deriving the DDPO objectives from scratch for a mathematically inclined beginner to reinforcement
learning (but fairly well-versed with diffusion models).

2 Diffusion Model Refresher

A diffusion model is described by a forward and reverse process. The forward process is when we start
out with a clean image x0 and repeatedly add Gaussian noise ϵt ∼ N (0, I) to give use noisier and
noisier images xt. This is described by the following:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI)

where βt is a predefined monotonically increasing variance schedule. The forward process runs for
a total of T timesteps and finally ends with pure noise xT . The reverse process starts with pure noise
xT and uses a neural network to repeatedly denoise the image giving us xt. The end of the reverse
process gives us back our samples x0. This is described as follows:

pdiffusionθ (xt−1|xt) = N (xt−1;µθ(xt, t), β̃tI)

where β̃t is the variance schedule for the reverse schedule and µθ(xt, t) is the denoising neural
network. Note that the denoising neural network can be reparameterized to predict the noise ϵt in the
image. So instead of predicting the denoised image x̂0 directly, we can predict the noise in the image
and subtract it out to get x̂0. We train the reparameterized denoising neural network ϵθ(xt, t) in the
reverse diffusion process with a simple MSE loss:

Lsimple = Et,xt,ϵt ||ϵt − ϵθ(xt, t)||

In practice, training and sampling is quite simple. During each training step, a random image
x0 and timestep t is selected, the forward process starts from x0 till timestep t to get xt using the
noise ϵt, this is passed into our denoising model, and the MSE between the ϵt used to calculate xt

and the predicted ϵθ(xt, t) is optimized. During sampling, we start out with random Gaussian noise
xT ∼ N (0, I) and the denoising neural network is repeatedly applied to give us xt−1 until we reach
our sample x0.

3 Introduction to Reinforcement Learning

Okay let’s now dig into how reinforcement learning works and derive the DDPO objective. What we
want to do is to maximize the reward signal. We can mathematically express this as follows:

1

θ⋆ = argmax
θ

Ex0∼pθ(·|c)[r(x0 | c)]

where θ is the weights of our diffusion model, c is some conditioning for the diffusion model, and
r(·) is our reward function.

It would be nice to directly maximize for r(·) and if our model was a single evaluation of a neural
network, we could simply backpropagate through the neural network and use an optimizer to update
the weights. But that’s not what happens with a diffusion model! We have multiple timesteps for
which we apply our denoising neural network. This constructs a trajectory as its known in the RL
literature. In standard RL literature, our trajectory is composed of states and actions. A model
that we are optimizing provides the next action given the current state, and this model is referred to
as the policy. This framework is known as a Markov Decision Process (MDP). Note that in the
general MDP framework, a reward is usually given after each action, and we optimize over the sum of
rewards over the whole trajectory.

We can easily describe diffusion models as an MDP, which will allow us to use standard results in
RL for diffusion model optimization.

st ≜ (c, t,xt) π (at | st) ≜ pdiffusionθ (xt−1 | xt, c) p (st+1 | st,at) ≜
(
δc, δt−1, δxt−1

)
at ≜ xt−1 ρ0 (s0) ≜ (p(c), δT ,N (0, I)) R (st,at) ≜

{
r (x0, c) if t = 0

0 otherwise

J (θ) = Eτ∼p(·|π)

[
T∑

t=0

R (st,at)

]
= Ex0∼pθ(·|c) [r(x0 | c)]

st is the state, which is just the current noisy image xt (along with the timestep and condition
info). at is the action, which is the slightly less noisy image xt−1. π (at | st) is the policy that takes the
current state and provides the next action, which is our diffusion model pdiffusionθ (xt−1 | xt, c). ρ0 (s0)
is the distribution of the initial states, which in this case is the same distribution for xT , a standard
isotropic normal distribution, with the timestep always being T and the conditioning having whatever
prior distribution as in the dataset. p (st+1 | st,at) is giving st+1 given the current state and action,
and is basically just saying it always goes to the state associated with xt−1. R (st,at) is the reward
after each action/state (which is zero until the very last step when the generation is complete).

Okay, with this framework in place it becomes trivial to apply standard policy gradient optimiza-
tion methods like REINFORCE and proximal policy optimization (PPO). Let’s derive these
two algorithms now.

Let’s represent the entire trajectory as τ and the probability density for trajectories as pθ(s0,a0, · ·
·, sT ,aT) = pθ(τ).

Here is our objective, note that the expectation is defined as an integral:

JRL(π) = Eτ∼pθ(τ) [r(τ)] =

∫
pθ(τ)r(τ)dτ

We want to perform gradient ascent on J (θ) in order to maximize the reward:

∇θJ (θ) =
∫
∇θpθ(τ)r(τ)dτ

We can rewrite this using the following identity:

∇θpθ(τ) = pθ(τ)
∇θpθ(τ)

pθ(τ)
= pθ(τ)∇θ log pθ(τ)

Rewriting the gradient equation:∫
∇θpθ(τ)r(τ)dτ =

∫
pθ(τ)∇θ log pθ(τ)r(τ)dτ = Eτ∼pθ(τ) [∇θ log pθ(τ)r(τ)]

So this gives:

∇θJ (θ) = Eτ∼pθ(τ) [∇θ log pθ(τ)r(τ)]

2

Now, note that:

pθ(τ) = pθ(s0,a0, · · ·, sT ,aT) = ρ0(s0)

T∏
t=0

πθ (at | st) p (st+1 | st,at)

Basically we’re mathematically describing that we’re taking some action given the current state
based on the policy, and then given that action we have some probability for the next state. And
since the transitions are independent (it’s a Markov Decision Process), we can use the product rule
for probability and get the probability for the full trajectory.

Okay then we can take the logarithm of both sides:

log pθ(τ) = log p(s0) +

T∑
t=0

log πθ (at | st) + log p (st+1 | st,at)

Then,

∇θ log pθ(τ) = ∇θ

[
log p(s0) +

T∑
t=0

log πθ (at | st) + log p (st+1 | st,at)

]
= ∇θ

T∑
t=0

log πθ (at | st)

(dropping terms that don’t depend on θ)

Remembering that r(τ) =
∑T

t=0 R(st,at), we can get our policy gradient:

∇θJ (θ) = Eτ∼pθ(τ)

[(
T∑

t=0

∇θ log πθ (at | st)

)(
T∑

t=0

R(st,at)

)]
This gradient is referred to as the REINFORCE gradient and is only one type of policy gradient

that could be used. Of course, this policy gradient is then used to update the weights of our model
using gradient ascent:

θ ← θ + α∇θJ (θ)

where α is some learning rate.
One implementation point is that the expectation is over the trajectories but of course we can’t take

and sum over all possible trajectories. The expectation is estimated with just the sampled trajectories
in the currenty batch. One other implementation point to mention: we could calculate our gradient
and then pass that gradient to our optimizer, or we could let autograd handle the calculation of the
gradient by constructing a loss function and treating it as a standard training loop. The latter is what
is done in practice even though it is not explicitly mentioned often in the papers. So our loss function
is:

L(θ) = Eτ∼pθ(τ)

[
−

(
T∑

t=0

log πθ (at | st)

)(
T∑

t=0

R(st,at)

)]
Okay so we can simply plug in our diffusion model terms based on how it fits into the MDP

framework, which we described earlier. We get:

∇θJ (θ) = E

[(
T∑

t=0

∇θ log p
diffusion
θ (xt−1 | c, t,xt)

)
r(x0, c)

]
This objective and gradient estimator is referred in the paper as DDPOSF.
One challenge with this approach is that for each optimization step, the sampling from the current

iteration of the model needs to be performed, we need to re-calculate xt as it comes from the current
version of the model. This can be computationally expensive and wasteful, as the samples collected
with previous iterations of the model cannot be used to learn.

One trick to address this is known as importance sampling. This relies on the following identity
(trivial to demonstrate based on the expectation definition):

3

Ex∼p(x) [f(x)] = Ex∼q(x)

[
p(x)

q(x)
f(x)

]
In order to take advantage of this, let’s rewrite our policy gradient:

∇θJ (θ) = Eτ∼pθ(τ)

[(
T∑

t=0

∇θ log πθ (at | st)

)(
T∑

t=0

R(st,at)

)]

= Est∼pθ(st)

[
Eat∼πθ(at|st)

[(
T∑

t=0

∇θ log πθ (at | st)

)(
T∑

t=0

R(st,at)

)]]
This is just saying that the expectation over all the trajectories can be decomposed into an expec-

tation over all states of a conditional expectation over all actions as chosen by the policy. That’s a
little complicated so let’s break it down a bit.

Basically, our trajectory is composed of the states and actions and we have an expectation over all
trajectories. Our actions are given by the stochastic policy dependent on the states, so we will have
a conditional expectation for the actions. We can then take the expectation over all the states to get
the full expectation of all actions. This gives such the expectation over all the trajectories (states and
actions). Note that the marginal distribution for the states is itself dependent on θ since the states
are given by p (st | st−1,at) but of course at ∼ πθ (at | st).

Okay now we can apply importance sampling twice here, where we sample from a new distribution
given by θold, old parameters for our policy:

∇θJ (θ) = Est∼pθold
(st)

[
pθ (st)

pθold (st)
Eat∼πθold

(at|st)

[
πθ (at | st)
πθold (at | st)

(
T∑

t=0

∇θ log πθ (at | st)

)(
T∑

t=0

R(st,at)

)]]

It can be shown (which I won’t go over here for now) that pθ(st)
pθold

(st)
≈ 1 if |πθ (at | st)−πθold (at | st)| ≤

ϵ. So this gives:

∇θJ (θ) = Est∼pθold
(st)

[
Eat∼πθold

(at|st)

[
πθ (at | st)
πθold (at | st)

(
T∑

t=0

∇θ log πθ (at | st)

)(
T∑

t=0

R(st,at)

)]]

∇θJ (θ) = Eτ∼pθold
(τ)

[(
T∑

t=0

πθ (at | st)
πθold (at | st)

∇θ log πθ (at | st)

)(
T∑

t=0

R(st,at)

)]
Again this can be written down as a loss function that we perform gradient descent on:

L(θ) = Eτ∼pθold
(τ)

[
−

(
T∑

t=0

πθ (at | st)
πθold (at | st)

)(
T∑

t=0

R(st,at)

)]
Just for simpler notation, let’s rewrite the loss as an expectation over t:

L(θ) = Et

[
− πθ (at | st)
πθold (at | st)

(
T∑

t=0

R(st,at)

)]
Again, we can plug in the diffusion model terms based on the MDP framework and get this loss

function:

L(θ) = E

[
−

T∑
t=0

pdiffusionθ (xt−1|c, t,xt)

pdiffusionθold
(xt−1|c, t,xt)

r(x0, c)

]
Minimization of this loss function is equivalent to gradient with the following gradient:

ĝ = E

[
T∑

t=0

pdiffusionθ (xt−1|c, t,xt)

pdiffusionθold
(xt−1|c, t,xt)

∇θp
diffusion
θ (xt−1|c, t,xt)r(x0, c)

]

4

Note that the reward r(x0, c) is usually normalized, and the normalized reward is referred to the
advantage A(x0, c). So the advantage can be negative if it’s less than average.

Note, as mentioned earlier, we can’t have the current policy diverge too much from the previous
policy. We can apply clipping to the importance sampling ratio to the loss function:

L(θ) = E

[
−

T∑
t=0

min

(
pdiffusionθ (xt−1|c, t,xt)

pdiffusionθold
(xt−1|c, t,xt)

A(x0, c), clip

(
pdiffusionθ (xt−1|c, t,xt)

pdiffusionθold
(xt−1|c, t,xt)

, 1− ϵ, 1 + ϵ

)
A(x0, c)

)]

So if the policy diverges too much (the ratio is either much larger or much smaller than 1) the loss
function is clipped to a certain value and the gradient will be zero and no updates will be made. Else,
it’s just sort of equivalent to the REINFORCE with importance sampling.

The loss function can be written in a way that’s numerically easier to calculate/more stable (using
logs, ignoring the clipping for now):

L(θ) = E

[
−

T∑
t=0

exp
(
log pdiffusionθ (xt−1|c, t,xt)− log pdiffusionθold

(xt−1|c, t,xt)
)
A(x0, c)

]
The objective and gradient estimator described here is referred in the paper as DDPOIS.

4 Additional Resources

• The original DDPO paper

• Sergey Levine’s lecture slides on policy gradient

• Sergey Levine’s lecture slides on PPO/TRPO

• HuggingFace course unit on PPO

• UWaterloo lecture on PPO

• Pieter Abbeel’s lecture on TRPO/PPO

• OpenAI Spinning Up RL course unit on PPO

• Karpathy’s blog post on RL

• Blog post on Fundamentals of Policy Gradients

• Policy Gradients Explained blog post

5

https://arxiv.org/abs/2305.13301
http://rail.eecs.berkeley.edu/deeprlcourse-fa21/static/slides/lec-5.pdf
http://rail.eecs.berkeley.edu/deeprlcourse-fa21/static/slides/lec-9.pdf
https://huggingface.co/learn/deep-rl-course/unit8/clipped-surrogate-objective
https://www.youtube.com/watch?v=wM-Sh-0GbR4
https://www.youtube.com/watch?v=KjWF8VIMGiY
https://spinningup.openai.com/en/latest/algorithms/ppo.html
http://karpathy.github.io/2016/05/31/rl/
https://danieltakeshi.github.io/2017/03/28/going-deeper-into-reinforcement-learning-fundamentals-of-policy-gradients/
https://jonathan-hui.medium.com/rl-policy-gradients-explained-advanced-topic-20c2b81a9a8b

	Introduction
	Diffusion Model Refresher
	Introduction to Reinforcement Learning
	Additional Resources

